Whole school curriculum intent

Develop a broad and balanced curriculum that enables students to learn, recall and apply knowledge and skills across different contexts, supported by a robust and consistent approach to assessment. This will lead to successful and resilient lifelong learners who can cope in a range of changing contexts.

Key stage $3 / 4$ subject curriculum intent
We aim to inspire our pupils to appreciate the beauty of Mathematics and use its logic skilfully across all areas of the school curriculum and life.

Year Group		Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year Group		Autumn Term 1	Autumn Term 2	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Year 9	Topic						
	Core knowledge from this topic	Basic skills in Number, Algebra, Geometry and Statistics	Percentages, Indices and roots, Algebraic Manipulation, Straight-Line graphs, Angle Facts	Accuracy, Circles, Equations and Inequalities, Probability	Probability, Sequences, Constructions, Quadratics, Quadratics Graphs	Ratio and Compound Measures, Proportion, Pythagoras' Theorem, Trigonometry	Statistical Graphs and Measures, Transformations and Vectors, Volume and Surface Area
	Links to the national curriculum	N1, N2, N3, N4, N5, N6, N10, N12, A1, A2, A5, A8, G1, G3, G4, G11, G12, G14, G16, S2, S5	N7, N9, N12, N13, R9, R16, A3, A4, A7, A9, A10, A12, A17, R11, R14, G5, G6, G19	N14, N15, N16, G9, G16, G17, G18, N8, A17, A22, N1, P1, P2, P3, P4, P5	N1, P1, P2, P3, P4, P5, A23, A24, A25, G2, G13, G15, A4, A18, A11, A18	R1, R3, R4, R5, R6, R7, R8, R10, R11, N11, N13, R13, G20, G21, R12	S2, S4, G7, G24, G25, R2, G16, G17
	Previous content that this topic builds upon						
	Key vocabulary	Integer, number, digit, negative, decimal, addition, subtraction, multiplication, division, remainder, operation, estimate, power, roots, factor, multiple, primes, square, cube, even, odd, inverse, fractions, mixed, improper recurring, integer, decimal, terminating, percentage, Expression, identity, equation, formula, substitute, term, like terms, index, power, collect, substitute, simplify. Angle, polygon, interior, exterior, proof, tessellation, rotational symmetry, parallel, corresponding, alternate, co-interior, vertices, edge, face, sides, triangle, perpendicular, isosceles, scalene, clockwise, anticlockwise, triangle, quadrilateral, pentagon, hexagon, heptagon, octagon, decagon, obtuse, acute, reflex, regular, irregular, two-dimensional, threedimensional, measure, line, angle, order intersecting, area, perimeter, formula, length, width, prism, compound, measurement, Mode, range, discrete, continuous, qualitative, quantitative, data, population, stem and leaf, frequency, table, sort, pie chart, estimate	Percentage, increase, decrease, multiplier, VAT, income, tax, profit, loss, repeated, simple, compound, inverse, Add, subtract, multiply, divide, indices, standard form, power, reciprocal, index, Expression, identity, equation, formula, substitute, term, like terms, index, power, collect, expand, bracket, factor, factorise, linear, simplify, Linear, graph, distance, time, coordinate, quadrant, real-life graph, gradient, intercept, equation, function, solution, parallel, Angle, polygon, regular, irregular, interior, exterior, proof, tessellation, parallel, vertices, sides, perpendicular, isosceles, scalene, triangle, quadrilateral, pentagon, hexagon, heptagon, octagon, decagon, obtuse, acute, reflex, congruent	Rounding, accuracy, significant figures, decimal places, Area, perimeter, formula, length, measurement, circle, tangent, chord, arc, sector, circumference, radius, diameter, pi, segment, cylinder, surface area, volume, accuracy, Solve, inequality, represent, bracket, expand, linear, equation, balance, Probability, outcomes, theoretical, mutually exclusive, relative frequency, fairness, experimental.	Probability, outcomes, theoretical, mutually exclusive, relative frequency, fairness, experimental, Arithmetic, geometric, sequence, nth term, derive, quadratic, triangular, cube, square, odd, even, Construct, circle, arc, vertex, twodimensional, three-dimensional, solid, elevations, congruent, angles, bearing, degree, bisect, perpendicular, loci, map, scale, plan, region, Quadratic, function, solve, expand, factorise, simplify, expression, factor, coefficient, bracket, Quadratic, function, solve, expand, factorise, simplify, expression, graph, curve, factor, coefficient, bracket	Ratio, proportion, share, parts, fraction, function, direct proportion, inverse proportion, compound measure, density, mass, volume, speed, distance, time, pressure, acceleration, velocity, Ratio, proportion, best value, unitary, proportional change, compound measure, density, mass, volume, speed, distance, time, pressure, acceleration, velocity, direct proportion, inverse proportion, constant of proportionality, Triangle, right angle, angle, Pythagoras' theorem, opposite, hypotenuse, adjacent, length, accuracy, Triangle, right angle, angle, sine, cosine, tan, trigonometry, opposite, hypotenuse, adjacent, ratio, elevation, depression, length, accuracy	Mean, median, mode, range, average, discrete, continuous, data, stem and leaf diagram, frequency, table, sort, estimate, Transformation, rotation, reflection, enlargement, translation, single, combination, scale factor, mirror line, centre of rotation, centre of enlargement, column vector, similarity, congruent, angle, direction, coordinate, describe, vector, scalar, multiple, parallel, Volume, formula, cuboid, prism, compound, cylinder, radius, diameter, pi, sphere, cone, hemisphere, accuracy, surface area
	Development of cultural capital						
	Development of reading	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading -History of algebra Football Pitches	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading -Health Inequalities Googol and googolplex	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading -Taxing Billionaires Perceptions of probability	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading-History of constructions Fibonacci numbers	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading -History of Trigonometry salary ratios and inequality	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading -3D Printing Opinion Polls

Concepts -wha will students be able to do at the By the e
abl to
peref

able to: Number

Number
-
Use
Use, order and compare positive and regative numbers (integers), decimals,
ractions and percentages; use the smbols $<,>$ and understand the \neq symbol;
Add, subtract, multiply and divide positive and negative numbers lintegers), decimals (including money), and fractions; multiply or divide any number by powers of 10 ,
Recall all multiticication facts to 10×10, nd use them to derive corresponding ivision facts;
Use brackets and the hierarchy of perations (including positive integer powers);
Sund numbers to a given power of 10 , nearest integer or to a given number of decimal places or significant figures; Express a given number as a percentage of another number;
Convert between fractions, decimals and percentages;
Use index notation for powers of 10 , Including negative powers
find the prime factor decomposition of positive integers and write as a product sing index notation;
ind the LCM and HCF of two numbers Solve simple problems using HCF, LCM ebra
Algebra
Manipulate and simplify algebraic expressions by collecting like terms; Multiply together two simple algebraic expressions, e.g. $2 a \times 3 b$;
simplify expressions by cancelling, e.g.
$\frac{4 x}{2}=2 x ;$
Use index notation and the laws of dices when multiplying or dividing algebraic terms;
Substitute numbers into algebraic expressions;
Geometry and Measure
Estimate sizes of angles and measure ngles using a protractor dentify a line perpendicular to a given he on a dlagram and use their roperties
dentify parallel lines on a diagram and se their properties;
Find missing angles using properties of corresponding and alternate angles; Understand and use the angle poperties of quadrilaterals; quadrilateral is 360°;

Express a given nu
another number;
ind a percentage of a quantity without a calculator: 50
nd a percentage of a quantity
measurement;
Calculate
Calculate ncrease/decrease;
Use percentages in real-life situation including percentages greater than 00\%
Price after VAT (not price before vat);
Value of profit or loss

- Simple interest;
- Compound interest;

Income tax calculations;
ind a percentage of a
Eind the original amount given the final
mount after a percentage increase or decrease;
Indices and Roots
Use index notation for powers of 10 ncluding negative powers Understand the difference between positive and negative square roots; se the laws of indices to simplify and caculate the value of numerical and division of integer powers, fractions and powers of a power; se numbers raised to the power zer including the zero power of 10 ; Convert large and small numbers in tandard form and vice versa; Add, subtract, multiply and divid numbers in standard form;
Interpret a calculator display using standard form and know how to enter numbers in standard form
Algebraic Manipulation
Multiply a single number term over a
racket
Ultiply together two algebrac xpressions with brackets
square a linear expression, e.g. $(x+$ ${ }^{1)^{2} ;}$
earrange simple equations; actorise algebraic expressions by
t-line Graph
Find the coordinates of the midpoint of
a line segment;
Read values from straight-line graphs for real-life situations;
Draw straight-line graphs for real-lif situations, including ready reckone

By the
able to able to:
Accuracy
-
using approximation and caltulation Round answers to a given degree accuracy;
Use inequality notation to specify simple error intervals due to truncatio
or rounding

circles
$-\quad$ Re

Recall the definition of a circle and identify, name and draw parts of circle including tangent, chord and segment
Recall and use formulae for the circumference of a circle and the area enclosed by a circle; circumference of a circle $=2 \pi r=\pi d$, area of a circle $=\pi r^{2}$, Use $\pi \approx 3.142$ or use the π button on a calculator;
Find the perimeters and areas of semicircles and quarter-circles;
Calculate perimeters and areas of composite shapes made from circles and parts of circles;
Equations and Inequalities
Solve simple equations with integers, unknown on both sides, brackets and negative numbers satisfy an inequality
Solve an inequality such as $-3<2 x+1$ <7 and show the solution set on number line;
Use the correct notation to show inclusive and exclusive inequalities; Construct inequalities to represent set shown on a number line

Probability

Mark events and/or probabilities on probability scale of 0 to 1 ; Write probabilities in words
fractions, decimals and percentages Fractions, decimals and percentages;
Find the probability of an eve happening using theoretical probability;
Use theoretical models to include outcomes using dice, spinners, coins; List all outcomes for single events systematically;
Identify different mutually exclusive outcomes and know that the sum of the probabilities of all outcomes is 1 ; Find the probability of an event happening using relative frequency; Estimate the number of times an even number of trials for both experimental and theoretical and theoretica

able to: Probability

Mark events and/or probabilities on probability scale of 0 to 1 ; Write probabilities in words
fractions, decimals and percentages. Find the probability of an even happening using theoretica probability;
Use theoretical models to includ outcomes using dice, spinners, coins; List all outcomes for single events systematically;
Identify different mutually exclusive outcomes and know that the sum of th Find the probability of an happening using relative frequency; happening using relative frequency; will occur, given the probability and the number of trials - for both experimental and theoretica probabilities.

Sequences

Recognise sequences of odd and even numbers, and other sequences including Fibonacci sequences
Write the term-to-term definition of a sequence in words;
Find a specific term in the sequence using position-to term or term-toterm rules;
Find the next term in a sequence,
Find the nth term
for a pattern sequence,
the nth term of an arithmetic sequence to
generate terms

Constructions

Understand congruence, as two shapes that are the same size and shape, Understand and draw front and side elevations and plan
from simple solids;

$$
\begin{aligned}
& \text { from simple solids; } \\
& \text { Given the front and }
\end{aligned}
$$

the plan of a solid, draw a sketch of the 3D solid;
Use a straight edge and a pair of compasses to do standard constructions: construct the perpendicular bisector, the perpendicular from a point to a line, construct the bisector of a given angle, construct angles of $90^{\circ}, 45^{\circ}$
Draw and construct diagrams from given instructions,
Find and describe
Find and describe regions satisfying combination of loci drawings;
the end of the unit, students should be
able to:
Ratio and Compound
Write ratios in their simplest form; Write/interpret a ratio to describe a situation;
Share a quantity in a given ratio including three-part ratios; Solve a ratio problem in context, Write ratios in form $1: m$ or $m: 1$; function; wwite lenghs, areas and volumes of two shapes as ratios in simplest form; between two quantities as relationship fraction;
Understand and use compound measures: density, pressure, speed Convert between metric speed measures
calculate average speed, distance, time - in miles per hour as well as metric measures, speed, acceleration (with formula provided and variables defined in the question);
change d / t in m / s to a formula in km / h, i.e. $\mathrm{d} / \mathrm{t} \times(60 \times 60) / 1000-$ with support. Express a multiplic
Eppress alicative relationship o quantities as a ratio or a fraction,
Solve proportion problems using the Work out which product offers best value and consider rates of pay; Work out the multiplier for repeated proportional change as a single decima number;
Understand and use compound measures
Calculate an unknown quantity from quantities that vary in direct or invers proportion,
Recognise when values are in direct propo and be a tre graph form, and use a graph to find the value
of k in $y=k$;
Understand, recall and use Pythagoras theorem in 2 D , including leaving answers in surd form and being able to justify if a triangle is right-angled or not;
Calcul Calculate the length of the hypotenuse and of a shorter side in a right-angled triangle, including decimal lengths and Aply Pythasoras
triangle drawn on a coordinate grid

Recognise Recognise the advantages and
disadvantages between measures of average;
find the mode, median, range, as well as the greatest and least values from stem and leaf diagrams, and compare two distributions from stem and leaf Lagrams (mode, median, range); Calculate the mean, mode, median and data);
Construct and interpret grouped frequency tables for continuous data; Transformations and Vectors

Find the centre of rotation, angle and direction of rotation and describe of turn and centre;
Rotate and draw the position of a shape after rotation about the origin or any coordinate grid;
Translate a given shape by a vector; Use column vectors by a vector; transform 2D shapes describe and translations on a coordinate grid;
Identify two column vectors which parallel;
Calculate using column vectors, and represent graphically, the sum of two vectors, the difference of two vectas and a scalar multiple of a vector, specified by a mirror line Identify the equation of a line of symmetry;
Transform 2D shapes using single reflections (including those not on coordinate grids) with vertical, horizontal and diagonal mirror lines, grid;
Enlarge a given shape using $(0,0)$ as the centre of enlargement, and enlarge shapes with a centre other than $(0,0)$; Find the centre of enlargement by ddentify the scale factor of an enlargement of a shape as the ratio of the lengths of two corresponding sides, simple integer scale factors, or simple fractions;
Volume and Surface Area
Recall and use the formula for the volume of a cuboid;
triangular prism, of a prism, including a riangular prism, cube and cuboid; shapes made from cubes and cuboids;

	Students will hopefully have seen the skill of substitution before but might need a recap. How to and why you can simplify a fraction.		basic angle facts. Students should understand when to leave an answer in surd form. Students can plot coordinates in all four quadrants and draw axes.			
Key vocabulary	Probability, dependent, independent, conditional, tree diagrams, sample space, outcomes, theoretical, relative frequency, fairness, experimental, Triangle, rectangle, parallelogram, trapezium, area, perimeter, formula, length, width, prism, compound, measurement, polygon, cuboid, volume, symmetry, vertices, edge, face, units, conversion Area, perimeter, formula, length, width, measurement, volume, circle, segment, arc, sector, cylinder, circumference, radius, diameter, pi, sphere, cone, hemisphere, segment, accuracy, surface area	solve, inequality, represent, substitute, linear, accuracy, Triangle, right angle, angle, Pythagoras' Theorem, sine, cosine, tan, trigonometry, opposite, hypotenuse, adjacent, ratio, elevation, depression, length, accuracy, Rearrange, simultaneous, substitution, elimination, subject, rearrange, simultaneous, substitution, elimination	Ratio, proportion, share, parts, fraction, function, direct proportion, inverse proportion, graphical, linear, compare, Triangle, right angle, angle, Pythagoras' Theorem, sine, cosine, tan, trigonometry, opposite, hypotenuse, adjacent, ratio, elevation, depression, length, accuracy,	Compound interest, growth, decay, depreciation, multiplier, Vector, direction, magnitude, scalar, multiple, parallel, collinear, ratio, column vector, Quadratic, function, solve, expand, factorise, simplify, expression, graph, curve, factor, coefficient, bracket, Reciprocal, linear, gradient, functions, direct, indirect, estimate, cubic, subject, rearrange, simultaneous, substitution, elimination, proof,		
Development of cultural capital	Many positions that fall under the umbrella term of management use Pythagoras' Theorem regularly. Computer and information systems managers, construction managers, engineering and natural sciences managers use this in their day-to-day business of their respective fields.	Astronomers use trigonometry to calculate how far stars and planets are from Earth, Even though we know the distances between planets and stars, this mathematical technique is also used by NASA scientist today when they design and launch space shuttles and rockets.	People who regularly include exponents (growth and decay) are economists, bankers, biologist, engineers, computer programmers and risk assessors. This topics has a vast number of real-life links to ensure that pupils can have real-life concepts to cement their understanding too.	Ensure that all pupils can apply all four operations to any problem so that they can confidently apply all skills to functional and "real-life" mathematical problems.		
Development of reading	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading - 3D shapes	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading - Pythagoras'	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading - Trigonometry	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice Guided reading - Vectors		
Concepts -what will students be able to do at the end of the topic	Probability > Apply ideas of randomness, fairness and equally likely events to calculate expected outcomes or multiple future experiments > Relate relative expected frequencies to theoretical probability, using appropriate language and the 0 to 1 probability scale	Inequalities > Solve linear inequalities in one variable > Represent the solution set on a number line Pythagoras' Theorem > Know the formula for Pythagoras' Theorem $a 2+b 2=c 2$ > Apply it to find lengths in right angled triangles in two dimensional figures	Sketching graphs Recognise, sketch and interpret graphs of linear functions, quadratic functions > Simple cubic functions and the reciprocal function $\mathrm{y}=\frac{1}{x}$ with $x \neq 0$ Direct and inverse proportion > Solve problems involving direct and inverse proportion, including	Solving Quadratic equations - Solve quadratic equations algebraically by factorising > Find approximate solutions using a graph Quadratic graphs > Recognise, sketch and interpret graphs of quadratic functions > Identify and interpret roots, intercepts and turning points of quadratic functions graphically \Rightarrow Deduce roots algebraically Growth and decay		

		functions with inputs and outputs Scatter graphs - Use and interpret scatter graphs of bivariate data - Recognise correlation and know that it does not indicate causation - Draw estimated lines of best fit - Make predictions - Interpolate and extrapolate apparent trends whilst knowing the dangers of doing so					
Year Group		Autumn Term 1	Autumn Term 2	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Year 11 Higher	Topic						
	Core knowledge from this topic	Probability Volume Algebra (quadratics, rearranging formulae and identities) Scatter graphs Numerical methods	Equations of circles Further equations and graphs Simultaneous equations Sketching graphs Diverse and inverse proportion	Inequalities Pythagoras' Theorem Basic Trigonometry Growth and decay Vectors Transforming functions	Sine and Cosine Circle Theorems Gradients and rate of change Pre-calculus and area under a curve Algebraic fractions		
	Links to the national curriculum (if applicable)	P2, P3, P5, P6, P8, P9, R12, G16, G17, N8, A4, A5, A6, A7, S6, N20	A16, A17, A18, A12, A11, A19, A21, A12, R10, R13, R14	$\begin{gathered} \text { A22, G20, G21, G6, R12, R16, } \\ \text { G25, A13 } \end{gathered}$	G22, G23, G10, R15, R14, A15	NA	NA
	Previous content that this topic builds upon	Students need to be able to convert between fractions, decimals and percentages. It is likely that students will be familiar with basic probability ideas from Key Stage 3, but they can access the materials in this topic without any prior knowledge. How to multiply a single term over a bracket. How to factorise a linear expression. How to collect like terms. How to calculate area and perimeter of rectangles or compound shapes made up of rectangles. Students will hopefully have seen the skill of substitution before but might need a recap. How to and why you can simplify a fraction.	Students should be able to use inequality signs between numbers. Students should be able to use negative numbers with the four operations, recall and use the hierarchy of operations and understand inverse operations. Students should be able to deal with decimals and negatives on a calculator. Students should be able to use index laws numerically. Students should be able to draw a number line.	Students should be able to plot coordinates and read scales Students should be able to substitute into a formula. Students should be able to square negative numbers. Students should be able to substitute into formulae. Students should be able to plot points on a coordinate grid. Students should be able to expand single brackets and collect 'like' terms Students should be able to rearrange simple formulae and equations, as preparation for rearranging trigonometric formulae. Students should recall basic angle facts. Students should understand when to leave an answer in surd form. Students can plot coordinates in all four quadrants and draw axes.	Students will have used column vectors when dealing with translations. Students can recall and apply Pythagoras' Theorem on a coordinate grid. Students should be able to find a percentage of an amount and relate percentages to decimals.		
	Key vocabulary	Probability, dependent, independent, conditional, tree diagrams, sample space, outcomes, theoretical, relative frequency, fairness,	solve, inequality, represent, substitute, linear, accuracy, Triangle, right angle, angle, Pythagoras' Theorem, sine, cosine, tan, trigonometry,	Ratio, proportion, share, parts, fraction, function, direct proportion, inverse proportion, graphical, linear, compare, Triangle, right angle, angle,	Compound interest, growth, decay, depreciation, multiplier, Vector, direction, magnitude, scalar, multiple, parallel, collinear, ratio, column vector,		

	experimental, Triangle, rectangle, parallelogram, trapezium, area, perimeter, formula, length, width, prism, compound, measurement, polygon, cuboid, volume, symmetry, vertices, edge, face, units, conversion Area, perimeter, formula, length, width, measurement, volume, circle, segment, arc, sector, cylinder, circumference, radius, diameter, pi, sphere, cone, hemisphere, segment, accuracy, surface area	opposite, hypotenuse, adjacent, ratio, elevation, depression, length, accuracy, Rearrange, simultaneous, substitution, elimination, subject, rearrange, simultaneous, substitution, elimination	Pythagoras' Theorem, sine, cosine, tan, trigonometry, opposite, hypotenuse, adjacent, ratio, elevation, depression, length, accuracy,	Quadratic, function, solve, expand, factorise, simplify, expression, graph, curve, factor, coefficient, bracket, Reciprocal, linear, gradient, functions, direct, indirect, estimate, cubic, subject, rearrange, simultaneous, substitution, elimination, proof,
Develop ment of cultural capital	Ensure that all pupils can apply all four operations to any problem so that they can confidently apply all skills to functional and "real-life" mathematical problems.	Many positions that fall under the umbrella term of management use Pythagoras' Theorem regularly. Computer and information systems managers, construction managers, engineering and natural sciences managers use this in their day-to-day business of their respective fields.	Astronomers use trigonometry to calculate how far stars and planets are from Earth, Even though we know the distances between planets and stars, this mathematical technique is also used by NASA scientist today when they design and launch space shuttles and rockets.	People who regularly include exponents (growth and decay) are economists, bankers, biologist, engineers, computer programmers and risk assessors. This topics has a vast number of real-life links to ensure that pupils can have real-life concepts to cement their understanding too.
음	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice
Development of reading	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice	The 'Frayer model' will be used to help students organise their understanding of a new academic term or complex vocabulary choice
Concepts -what will students be able to do at the end of the topic	Probability Apply ideas of randomness, fairness and equally likely events to calculate expected outcomes or multiple future experiments > Relate relative expected frequencies to theoretical probability, using appropriate language and the 0-1 probability scale > Understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size $>$ Enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams > Calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions > Calculate and interpret conditional probabilities through	Equations of circles - Recognise and use the equation of a circle with centre at the origin > Find the equation of a tangent to a circle at a given point Further equations and graphs > Solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation) > Find approximate solutions using a graph > Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula > Find approximate solutions using a graph > Recognise, sketch and interpret graphs of linear and quadratic functions > Identify and interpret roots, intercepts and turning points of quadratic functions graphically		Sine and Cosine > Know and apply the Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \text { and }$ cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$ to find unknown lengths and angles Know and apply Area $=\frac{1}{2} a b \sin C$ to calculate the area, sides or angles of any triangle Circle Theorems > Apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results Gradients and rate of change > Interpret the gradient at a point on a curve as the instantaneous rate of change > Apply the concepts of average and instantaneous rates of change (gradients of chords and tangents) in numerical, algebraic and graphical contexts

