Develop a broad and balanced curriculum that enables students to learn, recall and apply knowledge and skills across different contexts, supported by a robust and consistent approach to assessment. This will lead to successful and resilient lifelong learners who can cope in a range of changing contexts.

Computer Science curriculum intent

 knowledge, students are equipped to use a range of tools to create a number of projects related to real world scenarios and problems.
 the future workplace and as active participants in a growing digital world.

Key stage 3 and 4 learning is focused around three main themes:

1) How computers and digital systems work and the principles behind their use
2) How logical thinking and programming can be used to solve problems.
3) What impact technology has on our lives and how can it be applied in the workplace.

These themes are revisited in every year in a spiral curriculum, so that core knowledge is revisited and understanding is deepened, so that students are well prepared for exam success
 supports regular review as knowledge organisers and revision activities are available online.

Term	Year 7	Year 8	Year 9	Year 10	Year 11
Autumn 1	Introduction to computing and e safety Can we ever be safe online? (USCER unit)	Introduction to spreadsheets Can we accurately model the world using computer software? (Unit 4, spreadsheets)	Ethical, Legal and environmental concerns Unit 9	Unit 7 Programming fundamentals What types of programs are quicker to solve with a program, and which are slower? Unit 1 Computer Architecture How can we design the fastest computer in the world?	Unit 5 Legal and ethical impact of computer. How computers made the world a better place?
Autumn 2	Understanding computers How can we design the fastest computer in the world? (Unit 2)		Networks: Will the internet slow down as it gets bigger and grows older. (networks unit)	Unit 2 Data representation Is there anything that cannot be represented by 0 s and 1s? Unit 3 Networks Why can data travel securely across a network?	Review and practice questions Units 7, Unit 1 and Unit 2
Spring 1		Cyber security Why is our data so valuable to hackers? (Unit 6, cyber crime)		Unit 4 Network security and system software How can we guarantee that data will not be hacked when it travels across the internet? Unit 6 Algorithms How can we think more like a computer?	Review and practice questions Units 3, Unit 4 and Unit 6
Spring 2	Introduction to programming Can a computer be more intelligent than the human who programmed it? (Intro to Python unit)		Further programming How can we solve problems with efficient programs (Further python unit)	Unit 8 Producing robust programs How can we solve problems with efficient programs	Review and practice questions Units 8 and Unit 5 Full practice papers, final revision
Summer 1		Efficient programming How can we think more like a computer? (Computational thinking Unit)			Full practice papers, final revision
Summer 2	Theory revision How does theoretical knowledge help us become better Computer Scientists?	Theory revision How does theoretical knowledge help us become better Computer Scientists?	Theory revision How does theoretical knowledge help us become better Computer Scientists?	Theory revision How does theoretical knowledge help us become better Computer Scientists?	

$\begin{gathered} \text { Year } \\ \text { Group } \end{gathered}$		Autumn	Spring	Summer
Year 7	Topic	Aut 1: Introduction to computing and e-safety Can we ever be safe online? Aut 2: Understanding computers How can we design the fastest computer in the world?	Spr 1: Understanding computers How can we design the fastest computer in the world? Spr 2: Introduction to programming Can a computer be more intelligent than the human who programmed it?	Sum 1: Introduction to programming Can a computer be more intelligent than the human who programmed it? Sum 2: Theory revision How does theoretical knowledge help us become better Computer Scientists?
	Core knowle dge for this topic	Aut 1: - File management - Social networking risks - Password use - Using email - Critically searching the web - ASSESSMENT Aut 2 - Elements of a computer (inputs and outputs) - How the CPU works - 8 Bit binary conversion	Spr 1 - Binary addition - Storage devices, how they work and have developed - New technologies and their impact on the world - ASSESSMENT Spr 2 - Strings and variables - Data types and arithmetic - Selection - Algorithms	Sum 1 - While loops - Searching - Programming challenges - ASSESSMENT Sum 2 - Review "Can we ever be safe online" - Review "How can we design the fastest computer in the world" - Review "Can a computer be more intelligent than a human" - FINAL ASSESSMENT
	Links to national curricul um	- Understand a range of ways to use technology safely, respectfully, responsibly and securely, including protecting their online identity and privacy; recognise inappropriate content, contact and conduct and know how to report concerns - Understand the hardware and software components that make up computer systems, and how they communicate with one another and with other systems	- Understand the hardware and software components that make up computer systems, and how they communicate with one another and with other systems - Understand how instructions are stored and executed within a computer system - Understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion between binary and decimal]	- Understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem - Use Python to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions
	Previou s content that this topic builds upon	This is new content that is meant to bridge the gap of different schools, teaching different content at KS2. Some students will have had E-safety assemblies or some ICT-based lessons that would be more PSHE focused. This unit will create a strong foundation for students to build onto in KS3.	This is new content for students who will not have looked at this at KS2.	Students may have completed some programming elements at Primary such as Kodu game lab or Scratch programming that is very visually based with predefined options for students to plug and play with. Python will allow students to take some of the key ideas of sequence, selection and iteration and put them into practice with independent lead tasks using a textual language.
	Key vocabul ary	New Vocabulary - File Explorer - Teams - Cloud Storage - Social Network - Email - Reply - CC - BCC - Attachment - Search engine - Web browser - Data	New Vocabulary - CPU - RAM - Main memory - Secondary storage - ALU - Register - Binary - Hex - Magnetic - Solid state - Emerging technology	New Vocabulary - Strings - Integer - Float - Data types - Arithmetic - Casting - Selection - Iteration - Binary numbers - Indentation - Concatenation

- Advanced search

Develop
ment of cultural capital

- How modern communications developed from the telegraph and morse code.
- The origins of the Von Neumann programmable computer.
- The origins of binary from mechanical computers and electrical circuits

Read texts on:

- Online safety
- Effective passwords
- Searching the web
- Fetch - Decode - Execute cycle
- History of binary the internet and advice and support others in its use
- Development of hard disk technology, from tape to magnetic and then solid state.
- What future developments in technology could do to change the world.
- The ethical implications of computing making jobs obsolete and controlling more aspects of our lives.
- Beginnings of programming and logical thinking established by Ada Lovelace.

-

ad texts on

- Developments in data storage
- Future technological developments
- Data types and why they are important
- How algorithms work.
- How early programming languages e.g. Basic, established conventions used today.
- Logical thinking principles behind programming

Students will be able to explain how a computer uses binary signals to express and compute information white also comparing different components and it uses and helping match them to the criteria required by an end user

Read texts on

- Creating a while loop
- Types of searches
- Programming and problem solving

Autumn

Core knowle dge from this topic	- Computer models - Financial models - What if scenarios - Conditional formatting and validation - Macros and charts - Spreadsheet modelling - ASSESSMENT	- Email scams - Computer misuse - Protecting personal data - Copyright - Health and safety - ASSESSMENT	- Logical thinking - Logic gates - Algorithmic thinking - Abstraction - Decomposition - ASSESSMENT
Links to the national curricul um	- design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems - use 2 or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions	- Understand a range of ways to use technology safely, respectfully, responsibly and securely, including protecting their online identity and privacy; recognise inappropriate content, contact and conduct and know how to report concerns	- understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion between binary and decimal] - understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem
Previou content that this topic builds upon	- Logical thinking and programming languages from the programming unit in year 7	- Links to e safety and use of the internet from year 7. Gets students to think more about the security of data and the importance of passwords and encryption.	- Links to binary in Year 7 - Links to Python programming in Year 7 - Links to modelling at start of year 8
Key vocabul ary	- Row - Column - Value - Worksheet - Cell - Active cell - Label - Function - Conditional formatting - Validation - Macro - Chart	- Exams Scams - Phishing - Trojan Horse - Ransomware - Malware - Virus - Bots - Hacking - Identify theft - Passwords - Copyright - Plagiarism - Laws - Regulations - Safety - The environment	- Algorithms - Logic gates - AND OR NOT - Abstraction - Decomposition - Binary - Data representation - Loop and nested loop
Develop ment of cultural capital	- File based systems from the 1960 s - Relational models of data - Online processing of data - Use of big data today	- Development of encryption and how technology is changing crime - Historical origins of encryption from Caesar cipher, the enigma code and modern 256 bit encryption. - Potential impact of quantum computing on future web security.	- Development of early programming by Alan Perlis and Donald Knuth (the father of algorithms). - Importance of algorithms in shaping the modern world
Develop ment of reading	Read texts on: - Anatomy of a spreadsheet - What is a relational database?	Read texts on: - The talk talk data breach - History of encryption and ciphers	Read texts on: - Early work of Knuth and Perlis in developing algorithms - The characteristics of an algorithm

Computer Science Curriculum Overview Plan

- What if scenarios
 - How charts make data accessible
 - Cyber crime and its impact on computing
 - Environmental impact of technology

Concept Use a data model to predict what will happen in
s -what
will
will
student
s be
able to
do at
the end
of the topic

- Students will be able to identify malware and give advice on treatment.
- Students will advise on legal practice in computing and respective health and safety concerns including recycling.
- Representing data with binary
- Using abstraction and decomposition to solve problems
- Solve problems using logic gates and abstraction
- Create simple algorithms
- Make links between algorithms, spreadsheets and Python

Autumn
Spring
Summer

- Cultural and ethical concerns
- Computers in today's world
- The environmental impact of computers
- Legislation and privacy
- Application of legislation
- ASSESSMENT
- create, reuse, revise and repurpose digital artefacts for a given audience, with attention to trustworthiness, design and usability
- understand a range of ways to use technology safely, respectfully, responsibly and securely, including protecting their online identity and privacy; recognise inappropriate content, contact and conduct, and know how to report concerns
- The internet
- Connectivity
- Topologies
- Client-server networks
- Encryption
- ASSESSMENT
the national curricul um
- understand the hardware and software components that make up computer systems, and how they communicate with one another and with other systems

The bas

- Loops
- Lists
- Introducing functions
- Functions returning values
- Arrays and lists
- ASSESSMENT
- use 2 or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions
- understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion between binary and decimal]
- Introduction to Python in year 7, building on the basics.
- Spreadsheets logical thinking from Year 8, how these can be developed in Python.
- Algorithmic thinking unit in year 8 , how can these principles be applied in practice using Python
- Strings
- Integer
- Float
- Data types
- Arithmetic
- Casting
- Selection
- Iteration
- Binary numbers
- Indentation
- Concatenation
- E safety unit in Year 7, building on personal protection to wider concerns.
- Cybercrime unit in Year 8, building from crime to other implications of technology
- Phishing
- Trojan Horse
- Ransomware
- Malware
- Virus
- Bots
- Hacking
- Identify theft
- Passwords
- Copyright
- Plagiarism
- Laws
- Regulations
- Safety
- The environment
- Recycling
- The internet
- The world wide web
- Networks
- Connections
- Latency
- Bandwidth
- Topology

Bus

- Star
- Mesh
- Client
- Server
- Node
- Switch
- Hub
- Router
- Serve
- Encryption

The morality of computing and developing technology. Are they making the world a better or worse place?

Bob Kahn and Vint Cerf, the creation of TCP and IP, making the internet possible.
Tim Berners Lee and the creation of the world wide web

Development of early programming by Alan Perlis and Donald Knuth (the father of algorithms).

- Importance of algorithms in shaping the modern world

Develop \quad Reading on technologies impact on
ment of
reading

- The environment
- The law
- Employment

Articulate the positive and negative impacts of technology

- Evaluate the size of the impact and have view on if this is overall positive or negative

Reading texts on:

- Packet switching, how the internet works?
- Internet protocols, how do they manage the internet?
- Different network topologies

Reading texts on

- The importance of arrays in allowing program to access data
- How functions can improve the effectiveness of programs.
- Quantum computing and its implications for programming
- Explain the basics of how networks allow computer to communicate
- Know the advantages and disadvantages of networks
- Explain different topologies and why they are used
- Students will be able to confidently build a series of complex Python programs to solve a range of scenarios using a range of skills and techniques. tediques.

Year Group		Autumn Term 1a	Autumn Term 1b+2a	Autumn Term 2a	Autumn term 2b	Spring term 1	Spring Term 2
Year 10	Topic	Unit 7: Programming skills What types of programs are quicker to solve with a program, and which are slower?	Unit 1: Systems Architecture How can we design the fastest computer in the world?	Unit 2: Data Representation Is there anything that cannot be represented by 0 s and 1 s ?	Unit 3: Network, connections and protocols Why can data travel securely across a network?	Unit 4: Network security and systems software How can we guarantee that data will not be hacked when it travels across the internet?	Unit 6 Algorithms How can we think more like a computer?
	Core knowledge from this topic	- Recap programming fundamentals - Selection and sequence statements. - iterative statements - Procedures and functions - Calling text files - Query statements in SQL	- Parts of a processor. - Processor speed variables. - main and secondary storage, benefits and uses. - Magnetic and solid state storage. - How data is stored	- Binary to deanery conversion. - Binary addition, hexadecimal conversion. - Character sets, ASCII and Unicode. - Sound storage - Picture storage - Compression types (lossy and lossless)	- Internet protocols and world wide web. - LAN and WAN, characteristics and differences. - Wireless networks, wifi and Bluetooth, including potential issues. - Client server networks and peer to peer networks. - Network topologies. - Network protocols and their TCP/IP network layers.	- Common network threats. - Common vulnerabilities - Preventing network threats - Operating systems - Utility software	- What is computational thinking? - Searching algorithms using Binary, linear and random search. - Sorting algorithms including Bubble, merge and insertion sort. - Flowcharts - Pseudocode - Searching algorithms.
	Links to the national curriculum (if applicable)	N/A	N/A	N/A	N/A	- N/A	N/A
	Previous content that this topic builds upon	- Y7, intro to Python - Y8, spreadsheets - Y9, further python	- Y7, understanding computers	- Y7, understanding computers - Y8, computational thinking	- Y9 networking	- Y8, cybercrime	- Y7, intro to Python - Y8, computational thinking - Y9, further python
	Key vocabulary	- Strings - Integer - Float - Data types - Arithmetic - Casting - Selection - Iteration - Binary numbers - Indentation - Concatenation - Array - List - Text - CSV	- Binary - Storage - CPU - ALU - CU - BUS - Control - Memory - Data - Cache - Cores - Speed - RAM	- Binary - Storage - Addition - Hexadecimal - Conversion - Twos compliment - Characters - ASCII - Unicode - Extended ASCII - Resolution - Pixel - RGB	- Internet - World wide web - Network - Bandwidth - Latency - Wireless - WAP - WPA - LAN - WAN - PAN - Client - Server	- Malware - Virus - Worm - Bot - Botnet - Trojan-horse - Ransomware - Phishing emails - Vulnerabilities - Operating system - Firewall - Anti-virus - Utility software	- Abstraction - Decomposition - Linear search - Random search - Binary search - Flowcharts - Subprograms - Merge sort - Bubble sort - Insertion sort

1) Computer Science Curriculum Overview Plan								
Year Group		Summer Term 1	Summer Term 2	Year Group		Autumn Term 1	Autumn Term 2	Spring term 1
Year 10 continued	Topic	Unit 8: Logic and Languages How can we solve problems with efficient programs	Review and Year 10 Exam	Year 11	Topic	Unit 5: Impacts of digital technology	Application in programming and exam questions: Unit 7, Unit 1 and Unit 2	Application in programming and exam questions: Unit 3, Unit 4 and Unit 6
	Core knowledge from this topic	- Logic diagrams and truth tables. - Defensive design. - Error checking and debugging. - Assemblers and compilers - IDE	- Unit 1 - Unit 2 - Unit 3 - Unit 4 - Unit 6 - Unit 7 - Unit 8		Core knowledge from this topic	- ethical and cultural issues - Environmental impact of computers - Responsible e citizens - impact of legislation - Impact on wider society	Unit 7 - Recap programming fundamentals - Selection and sequence statements. - iterative statements - Procedures and functions - Calling text files Query statements in SQL	Unit 3 - Internet protocols and world wide web. - LAN and WAN, characteristics and differences. - Wireless networks, wifi and Bluetooth, including potential issues.
	Links to the national curriculum (if applicable)	N/A			Links to the national curriculum (if applicable)	N/A	Unit 1 - Binary to deanery conversion. - Binary addition,	networks and peer to peer networks. - Network topologies. - Network protocols
	Previous content that this topic builds upon	- Y7 intro to Python - Y8 Computational thinking - Y9 Further Python - Y10 Programming skills - Y10 Computational thinking			Previous content that this topic builds upon	- Y9 legal and environmental concerns	conversion. - Character sets, ASCII and Unicode. - Sound storage - Picture storage - Compression types (lossy and lossless)	and their TCP/IP network layers. Unit 4 - Common network threats. - Common vulnerabilities - Preventing network
	Key vocabulary	- Code - IDEs - Compilers - Defensive design - Debugging - Logic diagrams - Truth tables - Structure diagram - Module - Authentication - Syntax error - Logic error - Iterative Testing			Key vocabulary	- Ethical - Reduce - Reuse - Recycle - Law - Legislation	Unit 2 - Internet protocols and world wide web. - LAN and WAN, characteristics and differences. - Wireless networks, wifi and Bluetooth, including potential issues. - Client server networks and peer to peer networks.	threats - Operating systems - Utility software Unit 6 - What is computational thinking? - Searching algorithms using Binary, linear and random search. - Sorting algorithms including Bubble, merge and insertion
	Development of cultural capital	Development of high level computer languages and how they have evolved.			Development of cultural capital	Students will review the practice of themselves and schools and businesses to see how we can be better digital citizens and use technology more efficiently.	- Network topologies. - Network protocols and their TCP/IP network layers.	- Flowcharts - Pseudocode - Searching algorithms.

Year Group		Spring Term 2	Summer Term 1
Year 11 Continued	Topic	Application in programming and exam questions: Unit 8 and Unit 5	Final practice papers, Papers 1 and 2
	Core knowledge from this topic	Unit 8 - Logic diagrams and truth tables. - Defensive design. - Error checking and debugging. - Assemblers and compilers - IDE Unit 5 - ethical and cultural issues - Environmental impact of computers - Responsible e citizens - impact of legislation - Impact on wider society	Paper 1: Unit 1 Computer architecture Unit 2 Data representation Unit 3 Networks Unit 4 Network security and system software Unit 5 legal, ethical, environmental
	Links to the national curriculum (if applicable)		
	Previous content that this topic builds upon		
	Key vocabulary		Paper 2
	Development of cultural capital		Unit 6: Algorithms
	Development of reading		Unit 7: Programming Units 8 Logic and languages
	Concepts -what will students be able to do at the end of the topic		

