

2.3 – Producing Robust Programs

Anticipating Misuse

• May be a brute force attack on the
program.

• May be a user entering an incorrect input
to try and break the program.

• May be a user entering code into input
fields to access parts of the program they
should not.

• May simply be an error in input.

Authentication

• A coding method to check that:
o The user is who they say they

are
o The user is allowed to access

the program

• Can be as simple as asking for a
username and password

• There are three main
authentication factors
o Something you are, such as a

fingerprint or iris scan.
o Something you know, such as a

password, pin or secret answer
to a question.

o Something you have such as a
swipe card or mobile phone app.

• 2 factor authentication is where two
different authentication types are
required to access the program.

Input Validation

• Any user inputs may be incorrect, the program be able to handle this.

• Validation applies rules to inputs, data which does not follow the rules
is rejected to prevent it from crashing the program.
o Range Check – the input must be within a range. Usually applied

to numbers and dates. For example, when inputting the required
quantity into an order form, the number must be greater than 0
and less than the total stock available.

o Length Check - the input must not be too long or too short. For
example, a password must be at least eight characters, but not
more than 30.

o Presence Check – the input must be present. For example,
requiring a credit card number for an online order

o Format Check - the data must be in a specific format. For
example, an email address must have an @ symbol and at least
one dot.

o Type Check - the data must be a specific type, such as requiring a
currency input to be only numbers.

• Validation will not catch all errors as users may still make typos.

• Verification requires the user to enter key info twice to reduce the risk
of this.

Naming Conventions

• Using the same rules for naming
throughout the program make it
easier to read.

• These are applied to variables,
functions, procedures, etc.

• Should be easy to read.

• Should be meaningful.

• Makes the code easier to read
and to understand.

• For Example, FirstName is a
better variable name than just X or
FN.

Indentation

• Allows code within a
particular function or
procedure to be
grouped together.

• Often used with IF
statements.

• Multiple levels of
indentation may be
used.

• Makes the code easier
to read and
understand.

• Makes it easier to
focus on particular
parts of the code when
needed.

Good Practice
VAR Password as String

VAR User as String

Password=Input(“Enter the password”)

#Ensure the password is correct

IF Password=“letmein” THEN

 #Apply access levels

 IF User=“Technician” THEN

 Allow Unrestricted Access

 ELSE

 Allow Restricted Access

ELSE

 Deny Access

END IF

Bad Practice
VAR X as String

VAR Y as String

X=Input(“Enter the Password”)

IF X=“letmein” THEN

IF Y=“Technician” THEN

Allow Unrestricted Access

ELSE

Allow Restricted Access

ELSE

Deny Access

END IF

Commenting

• Lines within the code which
are not executed.

• Starts with a certain
character depending on the
language used. Common
symbols include # */ and /

• Informs the reader about
bugs or issues in the code

• Explains the functionality of
particular code

• Explains the purpose of
particular code

• Prevent code from
executing without deleting
it completely.

Testing

• Newly written code often contains errors.

• Testing helps to locate and remove these errors.

• Testing ensures the program works in the way it should.
Iterative Testing

• Takes place whilst the program is being written.

• The programmer tests individual lines or sections of code as they are
written.

• If an error is found, it is fixed and the code tested again.

• This process repeats, or iterates, until the code works as intended.

• It is easier to fix errors in smaller sections of code.
Final Testing

• Takes place once the code is finished.

• A final check to make sure the code works correctly.

• Makes sure the program does what it should.

• It can be harder to locate and fix errors at this stage because of the amount
of code.

Logic Errors

• An error in the way the program works,
causing it to not do what it should.

• May be the incorrect use of operators such as
entering < instead of >

• May be the creation of an infinite loop.

• May be the accidental reuse of a variable
name

• A program will run with logic errors but will not
function correctly.

Syntax Errors

• A mistake in how the code is written, breaking
the rules of the programming language.

• May be a misspelling or typo such as prnit
instead of print.

• May be a missed bracket.

• May be using a variable without declaring it.

• A program will not run if there are syntax
errors.

Selecting and Using Suitable Test
Data

• A range of data should be used
when testing.

• Normal data is correct and what
would usually be inputted by the
user.

• Boundary data is correct but is the
largest or smallest value which a
user might input. For example,
entering an age of 105.

• Invalid data is too large or small,
for example entering an age of
2978.

• Erroneous data is completely
incorrect, for example entering Bob
into an age field.

Test Plans

• Provides structure to testing.

• Records the result of testing.

• Should include:
o The test number
o The data entered
o The type of data
o The expected outcome
o The result of the test
o Any action required as a result

Refining Algorithms

• User prompts should
be helpful and explain
any input validation
rules.

• Code should convert
inputs to the required
data type if needed.

• Loops can be used to
request the user re-
enter data if it is
invalid.

• There may be a limit
on how many times the
user is asked in the
case of passwords or
other security fields.

Exam Style Question
Explain, using examples, way to improve the
maintainability of the program shown above [4]

Indent the lines within the IF statement in order to
make the code easier to read.
Use sensible variable names, for example ‘X’ could
instead be called ‘Password’ and ‘Y’ could be called
‘User’. This would make the program easier to
read.

Sub Programs

• Procedures carry out a set of
instructions and do no not return a
value.

• Functions are similar but do will return a
value.

• Both procedures and functions can
accept parameters

• Parameters are values passed into a
sub program. These are referred to as
arguments when calling the sub
program

• They provide structure to the code.

• They make code easier to understand.

• They allow code to be easily reused.

• They allow the program to be shorter as
code need not be written out multiple
times.

