$\xrightarrow{\rightarrow} 4 \times 3 \times 2 \times 1=24$ ways to arrange the letters P, I, X and L

Powers and roots $\quad N 6$,	
Special indices: for any value a :	
a^{0}	$=1$
a^{-n}	$=1$

$a^{-n}=\frac{1}{a^{n}}$
$a^{\left(\frac{p}{q}\right)}=\sqrt[a]{a^{p}}$
$\Rightarrow \quad 3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}$
$\Rightarrow \quad 8^{\left(\frac{2}{3}\right)}=\sqrt[3]{8^{2}}=4$
Surds

Laws of indice

N6, N7

$$
\Rightarrow\left(\frac{2 p q^{4}}{p^{3} q}\right)^{3}=\frac{8 p^{3} q^{12}}{p^{4} q^{3}}=\frac{8 q^{9}}{p^{6}} \text { or } 8 q^{9} p^{-6}
$$

Difference of two squares A4

$$
\begin{aligned}
& a^{2}-b^{2}=(a+b)(a-b) \\
& x^{2}-25=(x+5)(x-5)
\end{aligned}
$$

\qquad
Rearrange a formula A5
The subject of a formula is the ter \rightarrow Make x the subject of
$2 x+a y=y-b x$
$2 x+b x=y-a y$
$x(2+b)=y-a y$
$x=\frac{y-a y}{2+b}$

Functions

Combining functions:

$\mathrm{fg}(x)=x^{2}+3$
$\mathrm{gf}(x)=(x+3)^{2}$
The inverse of f is f^{-1}
\rightarrow If $\mathrm{f}(x)=2 x+5$ then
$y=\mathrm{m} x+\mathrm{c}$
$(x)=\frac{x}{2}$
$y=\mathrm{m} x+\mathrm{c} \quad$ A9
Equation of straight line $y=m x+c$
m is the gradient; c is the y intercept:
\Rightarrow is the gradient; c is the y intercept: that joins $(0,3)$ to $(2,11)$ Find its gradient....

- $\frac{-0}{2-0}=\frac{8}{2}=4$
...and its y intercept... . Passes through $(0,3)$ so $\mathrm{c}=3$
Equation is $y=4 x+3$
Parallel lines: gradients are equal; perpendicular lines: gradients are "negative reciprocals".
$\Rightarrow y=2 x+3$ and $y=2 x-5$ are parallel to each other; $y=2 x+3$ and $y=-\frac{1}{2} x+3$ are perpendicular Transformations of curves A13 Starting with the curve $y=\mathrm{f}(x)$: Translate $\binom{0}{a}$ for $y=\mathrm{f}(x)+a$
Translate $\binom{-a}{0}$ for $y=\mathrm{f}(x+a)$
Reflect in x axis for $y=-\mathrm{f}(x)$
Reflect y axis $\mathrm{for} y=\mathrm{f}(-x)$
Reffect in y axis for $y=\mathrm{f}(-x)$
Velocity - time graph
An_A15
Gradient = acceleration (you may need to draw a tangent one the find the gradient): Area under curve = distance travelled.

A4

Quadratics A11, A18 If a quadratic equation cannot be factorised, use the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

\Rightarrow Solve $2 x^{2}+\begin{gathered}2 a \\ x-7\end{gathered}=0$
$x=\frac{-3-\sqrt{9-(-56)}}{2 \times 2}=-2.73$
or $x=\frac{-3+\sqrt{9-(-56)}}{2 \times 2}=1.23$
Complete the square to find the turning point of a quadratic graph.
$\Rightarrow \quad \begin{aligned} & y=x^{2}-6 x+2 \\ & y=(x-3)^{2}-9+2\end{aligned}$

$$
\begin{gathered}
y=(x-3)^{2}-9+2 \\
y=(x-3)^{2}-7 \\
\text { ng point is at }(3,-7)
\end{gathered}
$$

Turning point is at $(3,-7)$
Equation of a circle
$x^{2}+y^{2}=r^{2}$ is a circle with centre
$x^{2}+y^{2}=r^{2}$ is a circle with ce
$(0,0)$ and radius r.
$\xrightarrow{(0,0) \text { and radius } r \text {. }} x^{2}+y^{2}=25$ has centre
$(0,0)$ and radius 5
Simultaneous equations A19
One linear, one quadratic;
\rightarrow Solve $\left\{\begin{array}{l}x+3 y=10 \\ x^{2}+y^{2}=20\end{array}\right.$
Rearrange the linear, and substitute into the quadratic
$x=10-3 y$
so $(10-3 y)^{2}+y^{2}=20$
Expand and solve the quadratic Expand and solve the quadratic
$100-60 y+9 y^{2}+y^{2}=20$ $10 y^{2}-60 y+80=0$
Finally, substitute into the linear and
solve, pairing values...
solve, pairing values...
$x+3 \times 2=10$ so $(x, y)=(4,2)$
$x+3 \times 4=10$ so $(x, y)=(-2,4)$
Sequences
A24, A25
nth term of an arithmetic (linear)
sequence is $b n+c$
$\rightarrow n$th term of $5,8,11,14, \ldots$ is $3 n+2$ (always increases by 3 first term is $3 \times 1+2=5$) nth term of a quadratic sequence is $\Rightarrow n^{2}+b n+c$
$\overrightarrow{n^{2}}+3 n-1$ are $3,9,17$,
Geometric sequence; multiply each term by a constant ratio
$\overrightarrow{7} 3,6,12,24, \ldots$ (ratio is 2) Fibonacci sequence; make the next $\xrightarrow{\text { term by adding the previous }}$

Trigonometry
Links two sides and one angle.
SOH $\mathrm{CAH} \mid$ TOA SOH | САН | TOA
$\sin \theta=\frac{\mathrm{opp}}{\text { hyp }} \quad \cos \theta=\frac{\mathrm{adj}}{\mathrm{hyp}} \quad \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$
Use "2ndF" or "SHIFT" key to find a missing angle
12 Iteration
You will be given the formula to use \Rightarrow Solve $x^{3}+6 x+4=0$ by using the iteration $=\sqrt[3]{6 x_{n}-4}$ Start with $x_{1}=-2.8$
$x_{2}=\sqrt[3]{6 \times(-2.8)-4}=-2.750$ $x_{3}=\sqrt[3]{6 \times(-2.750 \ldots)-4}=$ Repeat until you know the solution, or
you do as many as the question says.

The longest side of any right angled triangle is the hypotenuse; check that your answer is consistent with this.

Advanced trigonometry

Sine Rule	
Use if you are given an angle-side pair	
Missing side:	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Missing angle:	$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
Cosine Rule	
Use if you can't use the sine rule	
Missing side:	$a^{2}=b^{2}+c^{2}-2 b c \cos A$
Missing angle:	$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b}$

Special values of \sin , \cos , \tan
Learn (or be able to find
without a calculator)...

θ°	$\sin \theta^{\circ}$	$\cos \theta^{\circ}$	$\tan \theta^{\circ}$
0	0	1	1
30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	1	0	

Circle theorems

Circumference of circle $=\pi \times D \quad$ Area of triangle $=\frac{1}{2} a b \sin C$

Area of circle $=\pi \times r$

Arc length $=\frac{\theta}{360^{\circ}} \times \pi \times D$

Area of trapezium $=\frac{1}{2}(a+b) \times h$

Area of sector $=\frac{\theta}{360^{\circ}} \times \pi \times r^{2}$
Volume of prism $=$ area of cross section \times length

Percentages: multipliers R9, R16
Percentage increase or decrease; use multiplier (powers for repetition) \rightarrow Initially there were 20000 fish a lake. The number decreases by 15% each year. Estimate the $20000 \times 0.85^{6}=7500(2 \mathrm{sf})$

Formula for compound interest
Total accrued $=P\left(1+\frac{r}{100}\right)^{n}$
\rightarrow I invest $£ 600$ at 3% compound interest. What is my account worth $£ 600 \times\left(1+\frac{3}{100}\right)^{5}=£ 695.56$

Direct \& inverse proportion R10

is directly proportional to x :
$y=k x$ for a constant k
b is directly proportional to a^{2} $\overrightarrow{ } \vec{b}$ is directly proportional to a^{2}
$a=6$ when $b=90$ Find b if $a=8$ $=6$ when $b=90 \quad$ Find b if $a=8$ $b=k a^{2} \quad a=6$ and $b=90$ for k
$90=k \times 6^{2}$ so $k=2.5, b=2.5 a^{2}$ $90=k \times 6^{2}$ so $k=2.5, b=2.5 \times 160$
b is inversely proportional to x y is inversely proportional to x $y x=k$ or $y=\frac{k}{x}$ for a constant k

Probability rules

$\rightarrow \mathrm{P}(6$ on dice and H on conts $)$

$$
\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}
$$

Add for mutually exclusive events
$\rightarrow \mathrm{P}(5$ or 6 on dice $)$
Apply these rules to tree diagrams.
In general... $\mathrm{P}(A$ and $B)=\mathrm{P}(A$ given $B) \times \mathrm{P}(B)$
Histograms
Frequency = frequency density
multiplied by class width. This ultiplied by class width. This mea have the same area.

Box plots S4
Interquartile range (IQR) = UQ - LQ

,	

